
Package: mshap (via r-universe)
September 18, 2024

Title Multiplicative SHAP Values for Two-Part Models

Version 0.1.0.9001

Description Allows for the computation of mSHAP values on two-part
models as proposed by Matthews, S. and Hartman, B. (2021)
<arXiv:2106.08990>. Also contains functions for simple plotting
of the results (or any SHAP values). For information about the
TreeSHAP algorithm that mSHAP builds on, see Lundberg, S.M.,
Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B.,
Katz, R., Himmelfarb, J., Bansal, N., Lee, S.I. (2020)
<doi:10.1038/s42256-019-0138-9>.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports magrittr (>= 1.5), purrr (>= 0.3.4), dplyr (>= 1.0.4),
forcats, stringr, ggplot2, ggbeeswarm, rlang, tidyr,
tidyselect, scales

Suggests rmarkdown, knitr, insuranceData, reticulate, caret, testthat
(>= 3.0.0), covr

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 2.10)

Repository https://srmatth.r-universe.dev

RemoteUrl https://github.com/srmatth/mshap

RemoteRef HEAD

RemoteSha 3a0c7b1411a736a4128cf9ef1d71938ce4d8e95c

Contents
mshap . 2
observation_plot . 4

1

https://arxiv.org/abs/2106.08990
https://doi.org/10.1038/s42256-019-0138-9

2 mshap

summary_plot . 7
where . 10

Index 11

mshap mSHAP

Description

A function for calculation SHAP values of two-part models.

Usage

mshap(shap_1, shap_2, ex_1, ex_2, shap_1_names = NULL, shap_2_names = NULL)

Arguments

shap_1, shap_2 The SHAP values that will be multiplied together. They may be matrices or
data frames, and up to one may be a list where each element is a matrix or data
frame (this is necessary when one of the models is a multinomial classifier, for
instance). Each data frame or matrix here must have the same number of rows,
and if there are different numbers of columns or the columns are not the same,
then shap_*_names must be specified.

ex_1, ex_2 The expected values of the models across the training set. If one of the argu-
ments shap_* is a list, then the corresponding ex_* argument must be a vector
(or array) of the same length as the list.

shap_1_names, shap_2_names
The character vector containing the names of the columns in shap_1 and shap_2,
respectively. These must be in the same order as the columns themselves. If a list
is passed to one of the shap_* arguments, it does NOT affect the corresponding
shap_*_names argument, which will still be a single character vector.

Details

This function allows the user to input the SHAP values for two separate models (along with the ex-
pected values), and mSHAP then outputs the SHAP values of the two model predictions multiplied
together.

An included feature of the function is the ability to pass data frames that do not have the same
number of columns. Say for instance that one model benefits from a certain variable but the other
does not. As long as the shap_*_names arguments are supplied, the function will automatically add
a column of 0’s for missing variables in either data frame (matrix). This corresponds to a SHAP
value of 0, which of course is accurate if the variable was not included in the model.

Value

A list containing the multiplied SHAP values and the expected value. Or, in the case of a list passed
as one of the shap_* augments, a list of lists where each element corresponds to the same element
in the list passed to shap_*.

mshap 3

Examples

if (interactive()) {
shap1 <- data.frame(

age = runif(1000, -5, 5),
income = runif(1000, -5, 5),
married = runif(1000, -5, 5),
sex = runif(1000, -5, 5)

)
shap2 <- list(

data.frame(
age = runif(1000, -5, 5),
income = runif(1000, -5, 5),
married = runif(1000, -5, 5),
sex = runif(1000, -5, 5)

),
data.frame(

age = runif(1000, -5, 5),
income = runif(1000, -5, 5),
married = runif(1000, -5, 5),
sex = runif(1000, -5, 5)

),
data.frame(

age = runif(1000, -5, 5),
income = runif(1000, -5, 5),
married = runif(1000, -5, 5),
sex = runif(1000, -5, 5)

)
)

ex1 <- 3
ex2 <- c(4, 5, 6)

Case where both models have a single output
res1 <- mshap(

shap_1 = shap1,
shap_2 = shap2[[1]],
ex_1 = ex1,
ex_2 = ex2[1]

)
View(res1$shap_vals)
res1$expected_value

Case where one of your models has multiple outputs that are explained
res2 <- mshap(

shap_1 = shap1,
shap_2 = shap2,
ex_1 = ex1,
ex_2 = ex2

)
View(res2[[1]]$shap_vals)
res2[[1]]$expected_value

4 observation_plot

Case where the models have different variables
res3 <- mshap(

shap_1 = shap1,
shap_2 = shap2,
ex_1 = ex1,
ex_2 = ex2,
shap_1_names = c("Age", "Income", "Married", "Sex"),
shap_2_names = c("Age", "Income", "Children", "American")

)
Note how there are now 6 columns of SHAP values, since there are 6
distinct variables
View(res3[[1]]$shap_vals)
res3[[1]]$expected_value
}

observation_plot SHAP Observation Plot

Description

This Function plots the given contributions for a single observation, and demonstrates how the
model arrived at the prediction for the given observation.

Usage

observation_plot(
variable_values,
shap_values,
expected_value,
names = NULL,
num_vars = 10,
fill_colors = c("#A54657", "#0D3B66"),
connect_color = "#849698",
expected_color = "#849698",
predicted_color = "#EE964B",
title = "Individual Observation Explanation",
font_family = "Times New Roman"

)

Arguments

variable_values

A data frame of the values of the variables that caused the given SHAP values,
generally will be the same data frame or matrix that was passed to the model for
prediction.

shap_values A data frame of shap values, either returned by mshap() or obtained from the
python {shap} module.

observation_plot 5

expected_value The expected value of the SHAP explainer, either returned by mshap() or ob-
tained from the python {shap} module.

names A character vector of variable names, corresponding to the order of the columns
in both variable_values and shap_values. If NULL (default), then the column
names of the variable_values are taken as names.

num_vars An integer specifying the number of variables to show in the plot, defaults to the
10 most important.

fill_colors A character vector of length 2. The first element specifies the fill of a negative
SHAP value and the second element specifies the fill of a positive SHAP value.

connect_color A string specifying the color of the line segment that connects the SHAP value
bars

expected_color A string specifying the color of the line that marks the baseline value, or the
expected model output.

predicted_color

A string specifying the color of the line that marks the value predicted by the
model.

title A string specifying the title of the plot.

font_family A string specifying the font family, defaults to Times New Roman.

Details

This function allows the user to pass a sing row from a data frame of SHAP values and variable
values along with an expected model output and it returns a ggplot object displaying a specific map
of the effect of Variable value on SHAP value. It is created with {ggplot2}, and the returned value
is a {ggplot2} object that can be modified for given themes/colors.

Please note that for the variable_values and shap_values arguments, both of which are data
frames, the columns must be in the same order. This is essential in assuring that the variable values
and labels are matched to the correct shap values.

Value

A {ggplot2} object

Examples

if (interactive()) {
library(mshap)
library(ggplot2)

Generate fake data
set.seed(18)
dat <- data.frame(

age = runif(1000, min = 0, max = 20),
prop_domestic = runif(1000),
model = sample(c(0, 1), 1000, replace = TRUE),
maintain = rexp(1000, .01) + 200

)
shap <- data.frame(

6 observation_plot

age = rexp(1000, 1/dat$age) * (-1)^(rbinom(1000, 1, dat$prop_domestic)),
prop_domestic = -200 * rnorm(100, dat$prop_domestic, 0.02) + 100,
model = ifelse(dat$model == 0, rnorm(1000, -50, 30), rnorm(1000, 50, 30)),
maintain = (rnorm(1000, dat$maintain, 100) - 400) * 0.2

)
expected_value <- 1000

A Basic sumary plot
summary_plot(

variable_values = dat,
shap_values = shap

)

A Customized summary plot
summary_plot(

variable_values = dat,
shap_values = shap,
legend.position = "bottom",
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
colorscale = c("blue", "purple", "red"),
font_family = "Arial",
title = "A Custom Title"

)

A basic observation plot
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value

)

A Customized Observation plot
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value,
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
font_family = "Arial",
title = "A Custom Title",
fill_colors = c("red", "blue"),
connect_color = "black",
expected_color = "purple",
predicted_color = "yellow"

)

Add elements to the returned object
see vignette("mshap_plots") for more information
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value,
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
font_family = "Arial",

summary_plot 7

title = "A Custom Title"
) +

geom_label(
aes(y = 950, x = 4, label = "This is a really big bar!"),
color = "#FFFFFF",
fill = NA

) +
theme(

plot.background = element_rect(fill = "grey"),
panel.background = element_rect(fill = "lightyellow")

)
}

summary_plot SHAP Summary Plot

Description

A Function for obtaining a beeswarm plot, similar to the summary plot in the {shap} python pack-
age.

Usage

summary_plot(
variable_values,
shap_values,
names = NULL,
num_vars = 10,
colorscale = c("#A54657", "#FAF0CA", "#0D3B66"),
legend.position = c(0.8, 0.2),
font_family = "Times New Roman",
title = "SHAP Value Summary"

)

Arguments

variable_values

A data frame of the values of the variables that caused the given SHAP values,
generally will be the same data frame or matrix that was passed to the model for
prediction.

shap_values A data frame of shap values, either returned by mshap() or obtained from the
python {shap} module.

names A character vector of variable names, corresponding to the order of the columns
in both variable_values and shap_values. If NULL (default), then the column
names of the variable_values are taken as names.

num_vars An integer specifying the number of variables to show in the plot, defaults to the
10 most important.

8 summary_plot

colorscale The color scale used for the color of the plot. It should be a character vector of
length three, with the low color first, the middle color second, and the high color
third. These can be hex color codes or colors recognized by {ggplot2}.

legend.position

The position of the legend. See ?ggplot2::theme for more information.

font_family A character string specifying the family of the text on the plot. Defaults to Times
New Roman.

title A character string specifying the title of the plot.

Details

This function allows the user to pass a data frame of SHAP values and variable values and returns
a ggplot object displaying a general summary of the effect of Variable level on SHAP value by
variable. It is created with {ggbeeswarm}, and the returned value is a {ggplot2} object that can be
modified for given themes/colors.

Please note that for the variable_values and shap_values arguments, both of which are data
frames, the columns must be in the same order. This is essential in assuring that the variable values
and labels are matched to the correct shap values.

Value

A {ggplot2} object

Examples

if (interactive()) {
library(mshap)
library(ggplot2)

Generate fake data
set.seed(18)
dat <- data.frame(

age = runif(1000, min = 0, max = 20),
prop_domestic = runif(1000),
model = sample(c(0, 1), 1000, replace = TRUE),
maintain = rexp(1000, .01) + 200

)
shap <- data.frame(

age = rexp(1000, 1/dat$age) * (-1)^(rbinom(1000, 1, dat$prop_domestic)),
prop_domestic = -200 * rnorm(100, dat$prop_domestic, 0.02) + 100,
model = ifelse(dat$model == 0, rnorm(1000, -50, 30), rnorm(1000, 50, 30)),
maintain = (rnorm(1000, dat$maintain, 100) - 400) * 0.2

)
expected_value <- 1000

A Basic sumary plot
summary_plot(

variable_values = dat,
shap_values = shap

)

summary_plot 9

A Customized summary plot
summary_plot(

variable_values = dat,
shap_values = shap,
legend.position = "bottom",
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
colorscale = c("blue", "purple", "red"),
font_family = "Arial",
title = "A Custom Title"

)

A basic observation plot
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value

)

A Customized Observation plot
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value,
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
font_family = "Arial",
title = "A Custom Title",
fill_colors = c("red", "blue"),
connect_color = "black",
expected_color = "purple",
predicted_color = "yellow"

)

Add elements to the returned object
see vignette("mshap_plots") for more information
observation_plot(

variable_values = dat[1,],
shap_values = shap[1,],
expected_value = expected_value,
names = c("Age", "% Domestic", "Model", "Maintenence Hours"),
font_family = "Arial",
title = "A Custom Title"

) +
geom_label(
aes(y = 950, x = 4, label = "This is a really big bar!"),
color = "#FFFFFF",
fill = NA

) +
theme(

plot.background = element_rect(fill = "grey"),
panel.background = element_rect(fill = "lightyellow")

)
}

10 where

where Select variables with a function

Description

This selection helper selects the variables for which a function returns TRUE.

Usage

where(fn)

Arguments

fn A function that returns TRUE or FALSE (technically, a predicate function). Can
also be a purrr-like formula.

Value

A selection of columns

Index

mshap, 2

observation_plot, 4

selection helper, 10
summary_plot, 7

where, 10

11

	mshap
	observation_plot
	summary_plot
	where
	Index

